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A stabilized �nite element method for the Saint-Venant
equations with application to irrigation
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SUMMARY

When the two-dimensional shallow water equations are applied to solve practical irrigation problems,
additional numerical di�culties arise. Large friction coe�cients, dry bed conditions and singular in�l-
tration terms engender new challenges which are addressed here to build a �nite element method that
is robust enough for this type of application. The proposed method is a stabilized formulation based
on the symmetric quasi-linear form and the set of entropy variables. The robustness of the method is
increased with a discontinuity capturing operator. A predictor multi-corrector algorithm is employed to
solve the generalized trapezoidal rule. One of the novel features of the present technique is that an ‘ex-
plicit’ method has been developed with characteristics of implicit methods, so that the solution can be
advanced at a convective CFL number of 1, regardless of the source terms. This leads to an economic
procedure. Finally, an entropy production (in)equality is developed, which ensures the correct physi-
cal behaviour of the model and helps to determine the correct sign of the in�ltration term. Copyright
? 2002 John Wiley & Sons, Ltd.

KEY WORDS: �nite elements; stabilized methods; shallow water; irrigation

1. INTRODUCTION

The Saint-Venant or shallow water equations are a simpli�ed model of the Navier–Stokes
equations for free surface �ows. Although several assumptions apply, these equations �nd
application in many practical �ows such as dam-breaking waves, river �oods, tidal waves
and coastal currents. For these equations, a symmetric stabilized formulation based on the
set of entropy variables has already been presented in References [1; 2] for both steady and
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964 G. HAUKE

unsteady computations. These methods incorporate all the experience acquired in stabilized
�nite element methods for the Navier–Stokes equations by discretely satisfying a generalized
entropy production principle [3; 4]. In the above-mentioned references, the transient applica-
tions were dam-breaking=�ood wave problems.
However, when these equations are applied to irrigation computation, additional numerical

challenges are encountered which are not found in other situations. These challenges include
(i) very small water levels h, (ii) advance and recession waves over a dry bed, where h=0,
(iii) large friction coe�cients and singular friction terms which become unbounded as h→ 0,
(iv) very large, singular in�ltration terms, and (v) a limitation on the CFL stability condition
due to source terms.
All these factors make necessary the improvement of the method presented in Reference [2].

While increasing the robustness of the formulation, an ‘explicit’ method has been developed
without restriction of the CFL number due to the source term, allowing for practical purposes
a convective CFL=1, leading to an e�cient and economic procedure.
An outline of the paper follows. In the �rst two sections, we review the shallow water

equations for overland �ow applications in their symmetric form and emphasize that their
stability principle is the total energy equation for an isothermal �ow. Some conclusions are
drawn regarding the correct sign of the in�ltration term. In the fourth section, we present the
�nite element formulation and the predictor multi-corrector algorithm employed to advance
the equations in time. In the �fth section, practical computational details are outlined, and in
the sixth several numerical examples are compared with other computations. Some conclusions
end the paper.

2. THE SHALLOW WATER EQUATIONS FOR IRRIGATION APPLICATIONS

The shallow water equations can be expressed in conservative form as [5]

U; t + Fadvi; i =S (1)

where U is the vector of conservation variables, Fadvi is the advective �ux in the ith direction
(i=1; 2), and S is the source vector. An inferior comma represents partial di�erentiation and
the summation convention on repeated indices is applied throughout.
Equation (1) has been written as a function of conservation variables,

U=



U1
U2
U3


= h



1
u1
u2


 (2)

where ui are Cartesian velocity components and h is the water level with respect to the bed
elevation z. The advective �uxes can be expressed as

Fadvi = hui



1
u1
u2


+

1
2
gh2



0
�1i
�2i


 (3)

which have been written as a function of g the gravity constant and �ij the Kronecker delta
(the unit tensor, which takes on the value of 1 if i= j and zero otherwise).
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2D SHALLOW WATER EQUATIONS FOR IRRIGATION 965

For overland �ow applications, the source term includes three distinct contributions,

S=S0 − Sf + Sinf (4)

which represent, respectively, bottom slope, friction and in�ltration.
Bottom slope, by means of bed elevation z(x1; x2), can be expressed as

S0 = gh



0
So1
So2


=− gh



0
z;1
z;2


 (5)

Friction with the bed is modelled by the Manning friction law and, accordingly,

Sf= gh



0
Sf1
Sf2


= gh

f2
√
u21 + u

2
2

h4=3



0
u1
u2


 (6)

where f is the friction coe�cient. In�ltration can be modelled by

Sinf =



Sinf 0
Sinf 1
Sinf 2


=




−iinf
− 1
2 iinf u1

− 1
2 iinf u2


 (7)

where iinf is the in�ltration rate, that is, the in�ltrated volumetric �ux per unit area, or
dhinf =dt; the in�ltrated depth per unit time. In this work, this �ux has been modelled by the
Kostiakov–Lewis law [6]

iinf = � a ta−1opp + i0¿0; topp¿0

iinf = 0; topp60
(8)

where �, a and i0 are coe�cients depending on soil properties. Here, topp is the ‘opportunity
time’, the time during which the soil has been exposed to the liquid stream. There is some
confusion in the literature about the sign of the in�ltration term in the momentum equations. As
will be proved later, in order to obey the principle of energy conservation, the correct signs are
those displayed in Equation (7). This result is in accordance with Reference [6, Chapter 13].
De�ning the generalized entropy function H(U) as the mechanical energy with respect to

the bottom [7; 2],

H(U)= g
h2

2
+ h

u21 + u
2
2

2
(9)

the entropy variables are obtained by partial di�erentiation as

V=HT
;U=



gh− u21 + u

2
2

2
u1
u2




(10)
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966 G. HAUKE

As a function of the entropy variables V, the quasi-linear form of the system (1),

Ã0V; t + ÃiV; i= S̃ (11)

becomes a symmetric hyperbolic system [7; 2; 1]. That is, the coe�cient matrices enjoy the
special properties:

(i) Ã0 =U;V is symmetric, positive-de�nite.
(ii) Ãi=Fadvi;V is symmetric.

The explicit expression of these matrices can be found in Reference [2].

3. THE PRINCIPLE OF GENERALIZED ENTROPY PRODUCTION

As was pointed out in Reference [2], the principle of total energy conservation (which in
this context of isothermal incompressible �ow means the mechanical energy, i.e. kinetic plus
potential energy with respect to z) is the non-linear stability principle of the Saint-Venant
equations. It can be obtained from the system of equations by the dot product

V ·(U; t + Fadvi; i − S)=0 (12)

The analysis performed in Reference [2] is enlarged here to account for the in�ltration term.
For any smooth solution, the di�erent terms present in (12) can be expressed as follows:

V ·Ã0V; t =H;U ·U; t =H; t (13)

V ·Fadvi; i =
[
ui

(
gh2 +

1
2
h|u|2

)]
; i

(14)

V ·S= gh[(Soi − S�)ui] + [Sinf 0 v1 + Sinf i ui] (15)

The contribution due to in�ltration can be rearranged to give

[Sinf 0 v1 + Sinf i ui] = − iinf
[(
gh− u21 + u

2
2

2

)
+
1
2
(u21 + u

2
2)
]

= − gh iinf
6 0 (16)

That is, the production of generalized entropy due to in�ltration is negative-semide�nite.
Gathering all the terms and simplifying yields

0 = [h( 12 gh+
1
2 |u|2)]; t

+[hui(gh+ 1
2 |u|2)]; i
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2D SHALLOW WATER EQUATIONS FOR IRRIGATION 967

+ [gh z; i ui]

+ [ghS� ui]

+ [ghiinf ] (17)

Integrating over the spatial domain �, and taking into account that the products S�ui and
gh iinf are positive, one arrives at∫

�
([h( 12 gh+

1
2 |u|2)]; t + [hui(gh+ 1

2 |u|2)]; i + [gh z; i ui]) d�60 (18)

That is, the mechanical energy, the sum of potential plus kinetic energy, must decrease, and
it is a bounded function in the presence of appropriate boundary conditions.
If the sign of the in�ltration term were

Sinf =




−iinf
+1
2 iinf u1

+1
2 iinf u2


 (19)

which is frequently found in the literature, then

[Sinf 0 v1 + Sinf i ui] =−iinf
[(
gh− u21 + u

2
2

2

)
− 1
2
(u21 + u

2
2)
]

=−iinf
[
gh− 1

2
(u21 + u

2
2)
]

(20)

which has an inde�nite sign and does not guarantee energy boundness. In this case, the
in�ltration could increase the �ow energy, which is not physically correct. In any case, for
practical purposes, the sign of this term does not alter the solution signi�cantly.
Introducing the de�nition of the entropy �uxes,

�i= hui(gh+ 1
2 |u|2) (21)

Equation (18) can also be written as∫
�
(H; t + �i; i + [gh z; iui]) d�60 (22)

Since the Hessian Ã−10 is positive-de�nite, H(U) is a convex function of the conserved
properties and therefore, Equation (22) bounds the growth of the conservation variables them-
selves. Consequently, the principle of mechanical energy conservation is the stability statement
of the shallow water equations and is also its generalized entropy condition.
This can be seen more clearly by making use of the continuity equation. Assuming that

z= z(x; y),

gh z; iui = (gh zui); i − z(gh ui); i
= (gh zui); i + (gh z); t

(23)
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968 G. HAUKE

which after substitution yields the principle of total energy conservation for an isothermal
incompressible �ow,

∫
�
([h( 12 gh+ gz +

1
2 |u|2)]; t + [hui(gh+ gz + 1

2 |u|2)]; i) d�

=−
∫
�
([ghS� ui] + [ghinf ]) d�

60

(24)

4. FINITE ELEMENT FORMULATION

The system of equations based on the set of entropy variables is solved via the semi-discrete
stabilized method introduced in Reference [2], which is improved and extended here to account
for the in�ltration term and large friction coe�cients. Given an open spatial domain � with
boundary �, subdivided into nel elements with domain �e, the weak form can be written as
follows.
Given the solution at time tn, �nd V∈S such that ∀W∈V:

∫
�
(W ·U; t(V)−W; i ·Fadvi (V)−W ·S) d�

+
nel∑
e=1

∫
�e

L̃W · �̃(L̃tV − S) d�

+
nel∑
e=1

∫
�e
�̃hgijW; i ·Ã0V; j d�

=−
∫
�
W ·Fadvi (V)ni d� (25)

The �rst and last integrals represent the Galerkin contributions, which have been integrated
by parts for conservation. The second term is the Galerkin=least-squares integral, which adds
stability to the method while retaining accuracy. Finally, the third integral is the discontinuity-
capturing operator; a non-linear consistent operator that increases the control near
discontinuities. Further details and notation of the method can be found in Reference [2]
and references therein, which are completely necessary to fully understand this
section.
The new procedure allows to take time steps at a CFL=1 based on velocity, removing

the sti� and complex source terms from stability considerations. It also allows a simpler
computation of the friction terms as h→ 0. This technique departs from the previous ver-
sion in the computation of the tangent matrix M∗ employed in the predictor multi-corrector
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2D SHALLOW WATER EQUATIONS FOR IRRIGATION 969

algorithm [8; 9] (see Box 1 and Reference [2] for

Box 1. Predictor Multi-Corrector Algorithm.

(predictor phase)

v(0) = vn

(multi-corrector phase)

For i=0; 1; : : : ; imax − 1
M∗�v(i) =−R(i)
v(i+1) = v(i) + �v(i)

vn+1 = v(imax)

notation; in particular, R is the residual of the system of equations and v(i) the nodal unknowns
at iteration (i)).
The method is inspired on the following ideas. In ‘explicit’ �nite element algorithms, the

tangent matrix M∗ is usually based only on the transient terms, typically the Galerkin mass
matrix. However, this leads to an explicit treatment of the source terms which signi�cantly
reduces the time step allowed for stability. Source terms demand a selective treatment depend-
ing upon their sign. For unconditional stability, positive or production source terms should be
treated explicitly, while negative or dissipative terms, implicitly. Therefore, the ideal algorithm
should handle the source terms accordingly.
This concept is carried out in practice by a diagonally implicit treatment of the negative

or dissipative source terms, whereas the positive source terms are left out from the tangent
matrix, and thus are explicitly treated. To preserve the explicit structure of the algorithm,
the dissipative contributions are lumped into the tangent matrix, M∗. This diagonally lumped
methodology has been observed to be su�cient for providing implicit character to the neg-
ative source terms. For a stability analysis of these methods, References [10; 11] can be
consulted.
Depending on the choice of � (the generalized trapezoidal rule parameter) and imax (the

number of corrector passes), di�erent methods can be obtained. In particular, these are of
special interest.

(i) A family of ‘explicit’ methods can be obtained by choosing the nodal blocks of M∗=
[MAB] as

M∗
AB=

[
1
�t

∫
�
NAÃ0NB d�−

∫
�
NAC̃NB d�

]lumped
(26)

i.e. the lumped Galerkin mass–dissipation matrix. The tangent matrix for the dissipative
source term C̃ contains the friction and in�ltration contributions and, in particular, is
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970 G. HAUKE

written as

C̃=




− iinf
gh

0 0

0 −2 f
2
√
u21 + u

2
2

h1=3
− 1
2
iinf 0

0 0 −2 f
2
√
u21 + u

2
2

h1=3
− 1
2
iinf




(27)

This tangent is almost the consistent tangent of the source term, but somewhat sti�er.
With this choice, the resulting left-hand-side matrix is block-diagonal, and so the nodal
diagonal blocks are inverted with a Cholesky decomposition which is guaranteed to
exist because Ã0 − C̃ is symmetric, positive-de�nite.

(ii) A family of implicit methods can be obtained by choosing

M∗
AB =

1
�t

∫
�
NAÃ0NB d�

+ �
∫
�
NAÃiNB; i d�

+ �
nel∑
e=1

∫
�e
NA; iÃi �̃ÃjNB; j d�

+ �
nel∑
e=1

∫
�e
�̃hgijNA; iÃ0NB; j d�

−
∫
�
NAC̃NB d� (28)

The same matrix C̃ is chosen as before. Note the fully implicit treatment of the negative
source terms. In this case, the linear system of equations is solved via the GMRES
algorithm. (For more details, see Reference [9]).

Remarks

1. The 1-pass implicit method is equivalent to the 1-pass constant-in-time element of the
space–time formulation, which is an excellent method for steady-state computations.

2. For transient calculations, the ‘explicit’ version is recommended with �= 1
2 and two

corrector passes, i.e. imax =2, which is second-order accurate in time.
3. For steady-state calculations, the implicit method is recommended with �=1 and one
corrector pass, i.e. imax =1, which is �rst-order accurate in time.
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2D SHALLOW WATER EQUATIONS FOR IRRIGATION 971

5. COMPUTATIONAL DETAILS

5.1. CFL number

Explicit algorithms are conditionally stable, and therefore there is a maximum allowable time
step. The convective CFL number was evaluated based on velocity by means of the following
expression

CFL= 1
2�t max(

√
�s(u+ c);

√
�nc) (29)

where

�s = �i; s�i; s

�n = �i; n�i; n
(30)

are measures of the element size in the streamwise and orthogonal directions, respectively.
Here �k , k = 1; 2, are the local element coordinates; s, the streamwise direction and n its
normal.

5.2. Dry bed conditions

A very important practical situation is posed by what is called the dry bed condition, in which
the initial water level h is zero. This causes computational

Box 2. In�ltration Rate Computation.

if topp60 or h6�inf then
iinf = 0

else
iinf =� a ta−1opp + i0
iinf = min(iinf ; 12h=�t)

endif

di�culties in many codes when h appears in the denominator. This problem has been solved
by imposing a threshold value for the water level, the machine precision �M,

h := max(h; �M) (31)

Then, computations are carried out in all the elements without any exception.

Remark
With this new �nite element method, the friction term does not need any speci�c treatment
(compare with the method introduced in Reference [2], where the limit of h to zero in the
friction term had to be carried out with care).

5.3. Computation of the in�ltration term

Special care must be exercised with respect to the in�ltration term if the Kostiakov–Lewis law
is employed. When topp = 0, the in�ltration rate iinf tends to in�nity, which is not physically
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972 G. HAUKE

correct since it does not account for the existing amount of water. Therefore, the following
limit is imposed on iinf :

iinf := min(iinf ; 12h=�t)

The in�ltration rate iinf is assumed as time-dependent when applying the generalized trape-
zoidal rule.
The algorithm for the computation of the in�ltration rate is displayed in Box 2.

5.4. Computation of the opportunity time

The opportunity time is interpolated with the same shape functions employed for the dependent
variables and its computation is started when the front reaches a node (see Box 3). The front
is detected by means of a threshold elevation �inf , which is usually set to �inf = 0:001 m (see
for instance Reference [12]). There is some controversy regarding this approach but it is very
simple and convenient.
Another choice found in the literature is to include a front detection algorithm.

Box 3. Opportunity Time Algorithm.

Initialize topp = 0 for each time step:
if h¿�inf then
if topp = 0 then

topp = �M
else

topp = topp + �t
endif

endif

6. NUMERICAL EXAMPLES

First, two examples without in�ltration are presented to show the good behaviour of the
method after the modi�cations introduced in the present paper. Then three test cases including
in�ltration are presented, showing that in practical solutions, the new algorithm can in all cases
advance the solution at a CFL=1 based on velocity. This novel feature is lacked by standard
numerical methods.
All the present simulations employed bilinear elements and were integrated with the standard

2× 2 Gaussian quadrature rule.

6.1. Two-dimensional dam-break problem

This example consists of a dam-breaking test reported by the experimental data of Bellos
et al. [13]. It consists of a gradually convergent–divergent channel of a total length of 21m
and a maximum width of 1:4 m, with a dam positioned at the narrowest section of the
channel (width of 0:6 m and located at 8:5 m from the beginning). The channel is made
of steel and consistently the friction of the bottom is modelled with a roughness coe�cient
of 0.012 [13].
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Figure 1. Two-dimensional dam-break problem. Mesh and probe positions.

Figure 2. Two-dimensional dam-break problem. Problem set-up.

Figure 3. Two-dimensional dam-break problem. Water depth at station 1.

The mesh of 387 elements is shown in Figure 1. Circles show the position of stations
where experimental data were gathered. Slip boundary conditions were set at the channel side
walls, zero velocity at the beginning of the channel and zero vertical velocity component at
the exit plane. See Figure 2. For the slip boundary conditions along the curved wall, in order
to obtain a better representation of the normal vector to the boundary, the normal at each
node was computed from the co-ordinates of the previous node and next node. This averaging
process consistently improved the results. We consider here a dry bed test case with the initial
conditions of h=0:3 m at the left of the dam and h=0:0 m at the right. The slope of the
channel is 0.001 in this case.
The solution was advanced with a CFL number of 1. Results are plotted for the ‘explicit’

algorithm with �= 1
2 and imax =2. Solutions were also computed with a halved mesh, of

16× 84=1344 elements and 1445 nodes, which gave a similar solution, although slightly
better resolved in zones of sharp changes.
Figures 3–6 show the water level as a function of time in four gauge positions. As can be

seen, the water levels correlate very well with the experimental data during the entire time
interval. Figure 7 shows three-dimensional pictures of the free surface at four consecutive
times.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:963–984



974 G. HAUKE

Figure 4. Two-dimensional dam-break problem. Water depth at station 2.

Figure 5. Two-dimensional dam-break problem. Water depth at station 3.

Figure 6. Two-dimensional dam-break problem. Water depth at station 4.

6.2. Channel with sudden contraction

This problem simulates the hydraulic jump caused by an instantaneous rupture of a dam in a
symmetric channel with a sudden contraction. The channel has a total length of 18 m and a
width of 0:5m which becomes 0:2m at the narrowest section. The dam is placed at x=0. The
experimental results were obtained by Bento [14]. The geometry, together with the position
of the probes marked by circles, is depicted in Figure 8. The probes are located at the centre
of the channel, at the co-ordinates x=6:1; 8:6; 10:5 m.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:963–984
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Figure 7. Two-dimensional dam-break problem. Free surface position at times t=0:0; 5:6; 11:8; 19:3 s.

Because of the symmetry of the geometry, only half of the channel has been discretized.
The elongated geometry and computational e�ciency call for quadrilateral bilinear elements.
Several meshes were considered: one of the 744 bilinear elements, formed by 8× 93 quadri-
laterals, and another of 1460 bilinear elements, formed by 10× 146 quadrilaterals. In both

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:963–984
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Figure 8. Channel with sudden contraction. Domain outline with probe positions.

Figure 9. Channel with sudden contraction. Zoom of the mesh at contraction.

Figure 10. Channel with sudden contraction. Dry bed. Water depth at station 2.

cases, the elements were carefully stretched towards the converging section of the channel.
In Figure 9, a zoom of the mesh near the contraction can be viewed.
The present case corresponds to the initial conditions of h=0:403m at the left of the dam

and h=0:007m at the right. The bottom of the channel has no slope. Slip boundary conditions
were set at the channel side walls and at the symmetry line; zero velocity components at the
beginning of the channel and zero vertical velocity component at the exit plane. The Manning
friction coe�cient employed was 0.011.
Results can be compared with the experimental data at the probes in Figures 10–12. The

computed solution is within experimental scatter, and therefore behaves correctly, even though
high vertical accelerations do occur near the entrance of the contraction. The elevation of the
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Figure 11. Channel with sudden contraction. Water depth at station 3.

Figure 12. Channel with sudden contraction. Water depth at station 4.

water level can be observed in the 3D plots of Figures 13 and 14 for selected time steps. It
can be observed how the wave front reaches the contraction, developing an upstream travelling
hydraulic jump and stationary re�ecting oblique jumps at the contraction exit.

6.3. Parallel �ow irrigation

The next two examples consider the irrigation of a square �eld of side 100 m. In the �rst
test case, the �eld is irrigated uniformly from the west side with a volumetric �ow rate of
0:1 m3=s. The orientation of the �eld with respect to the Cartesian co-ordinate system can be
seen in Figure 15. The test case and the soil properties are taken from Reference [15], where
soil friction and in�ltration are given as f=0:14, a=0:5, k=0:006 m min−a, i0 = 0.
Zero initial conditions are imposed in the whole domain. Boundary conditions are:

(i) Inlet (west side), q= hu=0:1=100 m2=s.
(ii) Sides (north and south sides), u · n=0.
(iii) Exit (east side), none.

The solution was advanced in time with the explicit, second-order method, at a convective
CFL of 1.
Results were obtained in several re�ned meshes of bilinear uniform elements. Here the re-

sults for the mesh with element sides of �x=1:0m are shown. In Figure 16, the present results
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Figure 13. Free surface position at times t = 2:51; 4:24; 5:12; 6:07 s.
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Figure 14. Free surface position at times t = 7:03; 7:99; 8:97; 12:00 s.
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Figure 15. Parallel irrigation problem.

Figure 16. Water level and in�ltrated depth at t = 40 min for parallel �ow.

are compared with those of a one-dimensional �nite volume method (referred as Method 1D)
and of a bidimensional �nite di�erence method (Method 2D), both reported in Reference [15].
The elevation of the water h is depicted in the positive portion of the vertical axis, whereas
the in�ltrated depth hinf is shown in the negative portion of the plot. The results are displayed
at the same time, t=40 min. The present solution is stable, smooth and compares well with
the solutions obtained by the other methods, with the advantage that the present method can
be advanced at a CFL number of 1 based on velocity.

6.4. Radial �ow irrigation

This example is similar to the previous one, but in this case the land is irrigated from the
SW corner (see Figure 17). The boundary conditions are:

(i) Inlet, within the two elements at the SW corner, where the corresponding unitary �ow
q= hu is imposed to give the total volumetric �ux.
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Figure 17. Radial irrigation problem.

Figure 18. Water level and in�ltrated depth at t=40 min for radial �ow.

(ii) West and south sides, slip boundary conditions.
(iii) Exit (north and east sides), none.

Solutions for a mesh of 40× 40 bilinear elements are depicted in Figure 18 at time
t=40 min. Although in the present solution, the position of the front is lagged by one ele-
ment, overall it compares very well with the one obtained by the other methods [15]. Again
the method is able to advance the solution at a CFL=1 based on velocity.

6.5. Irrigation in microtopography

This example simulates a real irrigation problem reported in Reference [16] as case Irrigation
2 by Zapata and Playan. The irrigated �eld is a square of side 27:0m, whose microtopography
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Figure 19. Ground topography for the case of microtopography.

is plotted in Figure 19. The �eld is irrigated with 0:0093 m3=s from the SW corner, i.e. the
point with (0; 0) co-ordinates.
Two meshes have been employed. A mesh of 36× 36 and another one of 54× 54 bilinear

elements, where the nodal co-ordinates coincide where the terrain elevation and in�ltration
depth were measured. The results shown are from the �ner mesh. The boundary conditions
are

(i) Inlet, within the two elements at the SW corner, where the corresponding unitary �ow
q= hu is imposed to give the total volumetric �ux of 0:0093 m3=s.

(ii) Rest, slip boundary conditions.

Initial conditions were zero water elevation and zero velocity components everywhere.
The friction and in�ltration parameters, taken from Reference [16], are f=0:4, a=0:2563,
k=0:01470 m min−a, and i0 = 0.
The advancing front at the successive times 20; 40; 60; 80 min can be seen in Figure 20 and

a three-dimensional plot of the in�ltrated depth at time 90 min in Figure 21. The solution
compares very well with that reported in Reference [16]. Again, the robustness of the method
allows to take time steps at a convective CFL=1.

7. CONCLUSIONS

A stabilized �nite element method for the computation of irrigation applications has been
presented. It is based on solving the shallow water equations by taking advantage of the
symmetric hyperbolic form and the set of entropy variables. The solution in time is integrated
via the generalized trapezoidal rule and a predictor multi-corrector method which takes spe-
cial care of the source terms. An ‘explicit’ algorithm has been proposed which is capable of
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Figure 20. Advance curves for t≈ 20; 40; 60; 80 min.

Figure 21. In�ltrated depth in metres at t=90 min.
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advancing the solution at a convective CFL number of 1, removing the source terms from
stability considerations. This novel technique is based on a diagonal (lumped) implicit treat-
ment of the negative source terms. The e�ectiveness of the procedure is shown on various
problems, where the results are compared to experimental and other computational data.
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